您好,現(xiàn)在蔡蔡來為大家解答以上的問題。高中數(shù)學必修3,高中數(shù)學必修3相信很多小伙伴還不知道,現(xiàn)在讓我們一起來看看吧!
1、第一章 算法初步1.1.1 算法的概念算法概念:在數(shù)學上,現(xiàn)代意義上的“算法”通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.2. 算法的特點:(1)有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.(2)確定性:算法中的每一步應該是確定的并且能有效地執(zhí)行且得到確定的結果,而不應當是模棱兩可.(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題.(4)不唯一性:求解某一個問題的解法不一定是唯一的,對于一個問題可以有不同的算法.(5)普遍性:很多具體的問題,都可以設計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設計好的步驟加以解決.1.1.2 程序框圖程序框圖基本概念:(一)程序構圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形。
2、一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明。
3、(二)構成程序框的圖形符號及其作用程序框 名稱 功能 起止框 表示一個算法的起始和結束,是任何流程圖不可少的。
4、 輸入、輸出框 表示一個算法輸入和輸出的信息,可用在算法中任何需要輸入、輸出的位置。
5、處理框 賦值、計算,算法中處理數(shù)據(jù)需要的算式、公式等分別寫在不同的用以處理數(shù)據(jù)的處理框內(nèi)。
6、 判斷框 判斷某一條件是否成立,成立時在出口處標明“是”或“Y”;不成立時標明“否”或“N”。
7、學習這部分知識的時候,要掌握各個圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:使用標準的圖形符號。
8、2、框圖一般按從上到下、從左到右的方向畫。
9、3、除判斷框外,大多數(shù)流程圖符號只有一個進入點和一個退出點。
10、判斷框具有超過一個退出點的唯一符號。
11、4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個結果;另一類是多分支判斷,有幾種不同的結果。
12、5、在圖形符號內(nèi)描述的語言要非常簡練清楚。
13、(三)、算法的三種基本邏輯結構:順序結構、條件結構、循環(huán)結構。
14、順序結構:順序結構是最簡單的算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種基本算法結構。
15、順序結構在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。
16、如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所指定的操作。
17、2、條件結構:條件結構是指在算法中通過對條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結構。
18、條件P是否成立而選擇執(zhí)行A框或B框。
19、無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。
20、一個判斷結構可以有多個判斷框。
21、3、循環(huán)結構:在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復執(zhí)行某一處理步驟的情況,這就是循環(huán)結構,反復執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結構中一定包含條件結構。
22、循環(huán)結構又稱重復結構,循環(huán)結構可細分為兩類:(1)、一類是當型循環(huán)結構,如下左圖所示,它的功能是當給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。
23、(2)、另一類是直到型循環(huán)結構,如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。
24、當型循環(huán)結構 直到型循環(huán)結構注意:1循環(huán)結構要在某個條件下終止循環(huán),這就需要條件結構來判斷。
25、因此,循環(huán)結構中一定包含條件結構,但不允許“死循環(huán)”。
26、2在循環(huán)結構中都有一個計數(shù)變量和累加變量。
27、計數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結果。
28、計數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計數(shù)一次。
29、1.2.1 輸入、輸出語句和賦值語句輸入語句(1)輸入語句的一般格式(2)輸入語句的作用是實現(xiàn)算法的輸入信息功能;(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,變量是指程序在運行時其值是可以變化的量;(4)輸入語句要求輸入的值只能是具體的常數(shù),不能是函數(shù)、變量或表達式;(5)提示內(nèi)容與變量之間用分號“;”隔開,若輸入多個變量,變量與變量之間用逗號“,”隔開。
30、2、輸出語句(1)輸出語句的一般格式(2)輸出語句的作用是實現(xiàn)算法的輸出結果功能;(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,表達式是指程序要輸出的數(shù)據(jù);(4)輸出語句可以輸出常量、變量或表達式的值以及字符。
31、3、賦值語句(1)賦值語句的一般格式(2)賦值語句的作用是將表達式所代表的值賦給變量;(3)賦值語句中的“=”稱作賦值號,與數(shù)學中的等號的意義是不同的。
32、賦值號的左右兩邊不能對換,它將賦值號右邊的表達式的值賦給賦值號左邊的變量;(4)賦值語句左邊只能是變量名字,而不是表達式,右邊表達式可以是一個數(shù)據(jù)、常量或算式;(5)對于一個變量可以多次賦值。
33、注意:①賦值號左邊只能是變量名字,而不能是表達式。
34、如:2=X是錯誤的。
35、②賦值號左右不能對換。
36、如“A=B”“B=A”的含義運行結果是不同的。
37、③不能利用賦值語句進行代數(shù)式的演算。
38、(如化簡、因式分解、解方程等)④賦值號“=”與數(shù)學中的等號意義不同。
39、1.2.2條件語句條件語句的一般格式有兩種:(1)IF—THEN—ELSE語句;(2)IF—THEN語句。
40、2、IF—THEN—ELSE語句IF—THEN—ELSE語句的一般格式為圖1,對應的程序框圖為圖2。
41、圖1 圖2分析:在IF—THEN—ELSE語句中,“條件”表示判斷的條件,“語句1”表示滿足條件時執(zhí)行的操作內(nèi)容;“語句2”表示不滿足條件時執(zhí)行的操作內(nèi)容;END IF表示條件語句的結束。
42、計算機在執(zhí)行時,首先對IF后的條件進行判斷,如果條件符合,則執(zhí)行THEN后面的語句1;若條件不符合,則執(zhí)行ELSE后面的語句2。
43、3、IF—THEN語句IF—THEN語句的一般格式為圖3,對應的程序框圖為圖4。
44、注意:“條件”表示判斷的條件;“語句”表示滿足條件時執(zhí)行的操作內(nèi)容,條件不滿足時,結束程序;END IF表示條件語句的結束。
45、計算機在執(zhí)行時首先對IF后的條件進行判斷,如果條件符合就執(zhí)行THEN后邊的語句,若條件不符合則直接結束該條件語句,轉而執(zhí)行其它語句。
46、1.2.3循環(huán)語句循環(huán)結構是由循環(huán)語句來實現(xiàn)的。
47、對應于程序框圖中的兩種循環(huán)結構,一般程序設計語言中也有當型(WHILE型)和直到型(UNTIL型)兩種語句結構。
48、即WHILE語句和UNTIL語句。
49、WHILE語句(1)WHILE語句的一般格式是 對應的程序框圖是(2)當計算機遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與WEND之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個過程反復進行,直到某一次條件不符合為止。
50、這時,計算機將不執(zhí)行循環(huán)體,直接跳到WEND語句后,接著執(zhí)行WEND之后的語句。
51、因此,當型循環(huán)有時也稱為“前測試型”循環(huán)。
52、2、UNTIL語句(1)UNTIL語句的一般格式是 對應的程序框圖是(2)直到型循環(huán)又稱為“后測試型”循環(huán),從UNTIL型循環(huán)結構分析,計算機執(zhí)行該語句時,先執(zhí)行一次循環(huán)體,然后進行條件的判斷,如果條件不滿足,繼續(xù)返回執(zhí)行循環(huán)體,然后再進行條件的判斷,這個過程反復進行,直到某一次條件滿足時,不再執(zhí)行循環(huán)體,跳到LOOP UNTIL語句后執(zhí)行其他語句,是先執(zhí)行循環(huán)體后進行條件判斷的循環(huán)語句。
53、分析:當型循環(huán)與直到型循環(huán)的區(qū)別:(先由學生討論再歸納)(1) 當型循環(huán)先判斷后執(zhí)行,直到型循環(huán)先執(zhí)行后判斷;在WHILE語句中,是當條件滿足時執(zhí)行循環(huán)體,在UNTIL語句中,是當條件不滿足時執(zhí)行循環(huán)1.3.1輾轉相除法與更相減損術輾轉相除法。
54、也叫歐幾里德算法,用輾轉相除法求最大公約數(shù)的步驟如下:(1):用較大的數(shù)m除以較小的數(shù)n得到一個商 和一個余數(shù) ;(2):若 =0,則n為m,n的最大公約數(shù);若 ≠0,則用除數(shù)n除以余數(shù) 得到一個商 和一個余數(shù) ;(3):若 =0,則 為m,n的最大公約數(shù);若 ≠0,則用除數(shù) 除以余數(shù) 得到一個商 和一個余數(shù) ;…… 依次計算直至 =0,此時所得到的 即為所求的最大公約數(shù)。
55、2、更相減損術我國早期也有求最大公約數(shù)問題的算法,就是更相減損術。
56、在《九章算術》中有更相減損術求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母?子之數(shù),以少減多,更相減損,求其等也,以等數(shù)約之。
57、翻譯為:(1):任意給出兩個正數(shù);判斷它們是否都是偶數(shù)。
58、若是,用2約簡;若不是,執(zhí)行第二步。
59、(2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。
60、繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)(等數(shù))就是所求的最大公約數(shù)。
61、例2 用更相減損術求98與63的最大公約數(shù).分析:(略) 3、輾轉相除法與更相減損術的區(qū)別:(1)都是求最大公約數(shù)的方法,計算上輾轉相除法以除法為主,更相減損術以減法為主,計算次數(shù)上輾轉相除法計算次數(shù)相對較少,特別當兩個數(shù)字大小區(qū)別較大時計算次數(shù)的區(qū)別較明顯。
62、(2)從結果體現(xiàn)形式來看,輾轉相除法體現(xiàn)結果是以相除余數(shù)為0則得到,而更相減損術則以減數(shù)與差相等而得到1.3.2秦九韶算法與排序秦九韶算法概念:f(x)=anxn+an-1xn-1+….+a1x+a0求值問題f(x)=anxn+an-1xn-1+….+a1x+a0=( anxn-1+an-1xn-2+….+a1)x+a0 =(( anxn-2+an-1xn-3+….+a2)x+a1)x+a0 =......=(...( anx+an-1)x+an-2)x+...+a1)x+a0求多項式的值時,首先計算最內(nèi)層括號內(nèi)依次多項式的值,即v1=anx+an-1然后由內(nèi)向外逐層計算一次多項式的值,即v2=v1x+an-2 v3=v2x+an-3 ...... vn=vn-1x+a0這樣,把n次多項式的求值問題轉化成求n個一次多項式的值的問題。
63、2、兩種排序方法:直接插入排序和冒泡排序直接插入排序基本思想:插入排序的思想就是讀一個,排一個。
64、將第1個數(shù)放入數(shù)組的第1個元素中,以后讀入的數(shù)與已存入數(shù)組的數(shù)進行比較,確定它在從大到小的排列中應處的位置.將該位置以及以后的元素向后推移一個位置,將讀入的新數(shù)填入空出的位置中.(由于算法簡單,可以舉例說明)2、冒泡排序基本思想:依次比較相鄰的兩個數(shù),把大的放前面,小的放后面.即首先比較第1個數(shù)和第2個數(shù),大數(shù)放前,小數(shù)放后.然后比較第2個數(shù)和第3個數(shù)......直到比較最后兩個數(shù).第一趟結束,最小的一定沉到最后.重復上過程,仍從第1個數(shù)開始,到最后第2個數(shù)...... 由于在排序過程中總是大數(shù)往前,小數(shù)往后,相當氣泡上升,所以叫冒泡排序. 1.3.3進位制概念:進位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值。
65、可使用數(shù)字符號的個數(shù)稱為基數(shù),基數(shù)為n,即可稱n進位制,簡稱n進制。
66、現(xiàn)在最常用的是十進制,通常使用10個阿拉伯數(shù)字0-9進行記數(shù)。
67、對于任何一個數(shù),我們可以用不同的進位制來表示。
68、比如:十進數(shù)57,可以用二進制表示為111001,也可以用八進制表示為7用十六進制表示為39,它們所代表的數(shù)值都是一樣的。
69、一般地,若k是一個大于一的整數(shù),那么以k為基數(shù)的k進制可以表示為: ,而表示各種進位制數(shù)一般在數(shù)字右下腳加注來表示,如111001(2)表示二進制數(shù),34(5)表示5進制數(shù)第二章 統(tǒng)計2.1.1簡單隨機抽樣1.總體和樣本 在統(tǒng)計學中 , 把研究對象的全體叫做總體.把每個研究對象叫做個體.把總體中個體的總數(shù)叫做總體容量.為了研究總體 的有關性質(zhì),一般從總體中隨機抽取一部分: , , , 研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.2.簡單隨機抽樣,也叫純隨機抽樣。
70、就是從總體中不加任何分組、劃類、排隊等,完全隨 機地抽取調(diào)查單位。
71、特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯(lián)性和排斥性。
72、簡單隨機抽樣是其它各種抽樣形式的基礎。
73、通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
74、3.簡單隨機抽樣常用的方法: (1)抽簽法;⑵隨機數(shù)表法;⑶計算機模擬法;⑷使用統(tǒng)計軟件直接抽取。
75、在簡單隨機抽樣的樣本容量設計中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。
76、4.抽簽法: (1)給調(diào)查對象群體中的每一個對象編號; (2)準備抽簽的工具,實施抽簽 (3)對樣本中的每一個個體進行測量或調(diào)查 例:請調(diào)查你所在的學校的學生做喜歡的體育活動情況。
77、5.隨機數(shù)表法: 例:利用隨機數(shù)表在所在的班級中抽取10位同學參加某項活動。
78、2.1.2系統(tǒng)抽樣1.系統(tǒng)抽樣(等距抽樣或機械抽樣):把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。
79、第一個樣本采用簡單隨機抽樣的辦法抽取。
80、K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)前提條件:總體中個體的排列對于研究的變量來說,應是隨機的,即不存在某種與研究變量相關的規(guī)則分布。
81、可以在調(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。
82、如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
83、2.系統(tǒng)抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。
84、因為它對抽樣框的要求較低,實施也比較簡單。
85、更為重要的是,如果有某種與調(diào)查指標相關的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統(tǒng)抽樣可以大大提高估計精度。
86、2.1.3分層抽樣1.分層抽樣(類型抽樣):先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或?qū)哟?,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構成總體的樣本。
87、兩種方法:1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
88、2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
89、2.分層抽樣是把異質(zhì)性較強的總體分成一個個同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。
90、分層標準:(1)以調(diào)查所要分析和研究的主要變量或相關的變量作為分層的標準。
91、(2)以保證各層內(nèi)部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內(nèi)在結構的變量作為分層變量。
92、(3)以那些有明顯分層區(qū)分的變量作為分層變量。
93、3.分層的比例問題: (1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。
94、 (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。
95、如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進行加權處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復到總體中各層實際的比例結構。
96、2.2.2用樣本的數(shù)字特征估計總體的數(shù)字特征本均值: 2、.樣本標準差: 3.用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。
97、在隨機抽樣中,這種偏差是不可避免的。
98、雖然我們用樣本數(shù)據(jù)得到的分布、均值和標準差并不是總體的真正的分布、均值和標準差,而只是一個估計,但這種估計是合理的,特別是當樣本量很大時,它們確實反映了總體的信息。
99、4.(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標準差不變(2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標準差變?yōu)樵瓉淼膋倍(3)一組數(shù)據(jù)中的最大值和最小值對標準差的影響,區(qū)間 的應用;“去掉一個最高分,去掉一個最低分”中的科學道理2.3.2兩個變量的線性相關概念: (1)回歸直線方程 (2)回歸系數(shù)2.最小二乘法3.直線回歸方程的應用 (1)描述兩變量之間的依存關系;利用直線回歸方程即可定量描述兩個變量間依存的數(shù)量關系 (2)利用回歸方程進行預測;把預報因子(即自變量x)代入回歸方程對預報量(即因變量Y)進行估計,即可得到個體Y值的容許區(qū)間。
100、 (3)利用回歸方程進行統(tǒng)計控制規(guī)定Y值的變化,通過控制x的范圍來實現(xiàn)統(tǒng)計控制的目標。
101、如已經(jīng)得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中NO2的濃度。
102、4.應用直線回歸的注意事項 (1)做回歸分析要有實際意義; (2)回歸分析前,最好先作出散點圖; (3)回歸直線不要外延。
103、第三章 概 率3.1.1 —3.1.2隨機事件的概率及概率的意義基本概念:(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;(5)頻數(shù)與頻率:在相同的條件S下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)= 為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。
104、(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值 ,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。
105、我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。
106、頻率在大量重復試驗的前提下可以近似地作為這個事件的概率3.1.3 概率的基本性質(zhì)基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;(4)當事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性質(zhì):1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A 與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。
107、3.2.1 —3.2.2古典概型及隨機數(shù)的產(chǎn)生(1)古典概型的使用條件:試驗結果的有限性和所有結果的等可能性。
108、(2)古典概型的解題步驟;①求出總的基本事件數(shù);②求出事件A所包含的基本事件數(shù),然后利用公式P(A)= 3.3.1—3.3.2幾何概型及均勻隨機數(shù)的產(chǎn)生基本概念:(1)幾何概率模型:如果每個事件發(fā)生的概率只與構成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;(2)幾何概型的概率公式:P(A)= ;(3)幾何概型的特點:1)試驗中所有可能出現(xiàn)的結果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.請采納。
本文就為大家分享到這里,希望小伙伴們會喜歡。